Câu hỏi:
Giúp em bài tập về nhà Toán lớp 12 câu hỏi như sau: cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a tâm O,cạnh bên SA vuông góc với đáy và mặt phẳng (SBC) tạo với đáy 1 góc 60 độ . Khoảng cách từ điểm O đến mặt phẳng (SCD)
Trả lời 1:
Gia Sư Hoàng Khang gữi câu trả lời dành cho bạn:
Ta có:
$BC⊥AB, BC⊥SA$
$→ BC⊥(SAB) → BC⊥SB$
$(SBC)∩(ABCD)=BC$
Mà $SB⊥BC, AB⊥BC$
$→$ Góc giữa $(SBC)$ và đáy là $\widehat{SBA}=60^o$
$→ SA=AB.tan60^o$
$=a\sqrt[]{3}$
$d(O,(SCD))=\dfrac{1}{2}d(A,(SCD))$
Kẻ $AH⊥SD$, ta có:
$CD⊥AD, CD⊥SA → CD⊥(SAD) → CD⊥AH$
Mà $AH⊥SD → AH⊥(SCD)$
$→ d(A,(SCD))=AH=\dfrac{a.a\sqrt[]{3}}{\sqrt[]{3a^2+a^2}}=\dfrac{a\sqrt[]{3}}{2}$
Vậy khoảng cách từ $O$ đến $(SCD)$ bằng $\dfrac{a\sqrt[]{3}}{4}$.